Code: 19CS4501A

III B.Tech - I Semester - Regular Examinations - JANUARY 2022

ADVANCED DATA STRUCTURES (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place

PART - A

- 1. a) How does union-find works.
 - b) Define the balance factor of a node in a binary tree.
 - c) In a binary heap, for an item in position i where are the parent, left child, and right child located?
 - d) Find the number of edges in a spanning tree of graph with n-vertices?
 - e) Define the word Multi-way trie with an example.

PART – B

UNIT – I

2. a) What is the expected number of probes for both successful and unsuccessful searches in a linear probing table with load factor 0.25?

6 M

b) Explain how Insertion, Deletion & Search is done in skip lists with example.

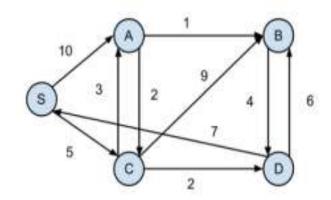
6 M

OR

3.	a)	Given the input (4371, 1323, 6173, 4199, 4344, 9679, 19891), a fixed table size of 10, and a hash function	
		$H(X) = X \mod 10$, show the resulting quadratic probing	
	1 \	hash table.	6 M
	b)	Outline Double Hashing with an example.	6 M
		<u>UNIT – II</u>	
4.	a)	How to calculate the Height of an AVL tree.	6 M
	b)	Show the result of inserting 2, 1, 4, 5, 9, 3, 6, and 7 into	
		an initially empty AVL tree.	6 M
		OR	
5.	a)	Construct the 2-3 Trees for following Elements 4, 3, 9,	
		10, 1, 6, 7, 8, 5, 2.	6 M
	b)	Discuss the importance of LL, RR Rotations in an	
		AVL tree with an example.	6 M
		<u>UNIT-III</u>	
6.	a)	Describe the structure and ordering properties of the	
		binary heap.	6 M
	b)	Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3,	
		9, 7, 4, 11, 13, and 2, one at a time, in an initially empty	
		heap then convert it into min heap.	6 M
		OR	
7.	a)	Write an algorithm to perform Insertion operation in	
		Binomial Queue.	6 M
	b)	Illustrate the Min, Max heaps with examples.	6 M
	•	•	OIVI

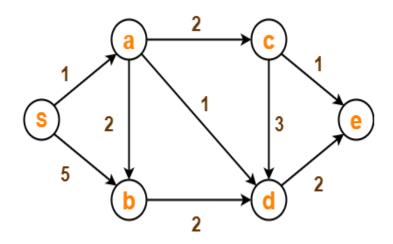
UNIT - IV

8. a) Write the procedure to find the shortest paths from the source node to another node of a graph using Dijstraw's Algorithm.


6 M

b) Explain the procedure to find the cost of a minimal spanning tree with Prim's Algorithm.

6 M


OR

9. a) Determine the lengths of shortest paths from the vertex s to all other vertices of the following graph using Kruskal's Algorithm.

6 M

b) Solve the following all pairs shortest path problem.

6 M

$\underline{UNIT-V}$

10.	a)	Solve the Boyer-Moore algorithm for the following	
		Example:	
		Text: ABCABCDABABCDABCDABDE	
		Pattern: ABCDABD	6 M
	b)	Solve the Knuth Morris-Pratt algorithm for the	
		following Example:	
		Text: HEREISASIMPLEEXAMPLE	
		Pattern: EXAMPLE	6 M
		OR	
11.	a)	What is Digital search tree. Explain the procedure to	
		insert & delete from a Digital search tree.	6 M
	b)	Describe the differences between Boyer- Moore	
		algorithm and Knuth Morris-Pratt algorithm.	6 M